Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Ital Chir ; 95(1): 78-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469615

RESUMO

BACKGROUND: To compare the clinical effects between wrist arthroscopy-assisted open reduction plus internal fixation, using the triangular fibrocartilage complex (TFCC) as an example, and simple open reduction plus internal fixation in the treatment of distal radius fractures (DRFs). The study aims to assess the efficacy of arthroscopic-assisted open reduction and internal fixation in treating distal radius fractures. METHODS: The study utilized a retrospective cohort research approach, involving 60 patients treated at Binzhou Medical University Hospital between August 2021 and October 2022. These patients met the specified criteria and underwent two distinct surgical procedures for DRFs. Prior to surgery, thorough communication was established with the patients to elucidate the advantages, risks, and associated costs of wrist arthroscopy, and informed consent was obtained. Subsequent to the surgeries, postoperative follow-up was conducted to evaluate the variances between the two treatment modalities. Postoperative analysis and assessment encompassed the patients' Visual Analogue Scale (VAS) scores, Cooney wrist scores, grip strength of the affected limb (in comparison with the healthy side), wrist range of motion, and the frequency of intraoperative fluoroscopy usage. RESULTS: No surgical complications were observed among all patients. They were followed up for an average duration of (12.1 ± 1.3) months postoperatively, during which all fractures healed successfully. Within the treatment group, arthroscopy detected 14 cases of TFCC tears during the operation, all of which were repaired under a microscope. Conversely, physical examination identified three cases of TFCC injury in the control group, which were treated via incision and suture. At the 3-month postoperative mark, the treatment group exhibited significantly superior comprehensive scores for wrist pain, grip strength, and wrist range of motion compared to the control group (p < 0.05). Cooney's comprehensive wrist joint scoring yielded the following results: treatment group - excellent in 21 cases, good in five cases, and moderate in four cases; control group - excellent in 16 cases, good in nine cases, and moderate in five cases. CONCLUSION: Wrist arthroscopy-assisted surgery facilitates precise reduction of the articular surface and alleviation of intraarticular congestion. Moreover, it enables evaluation and repair of concurrent intra-articular injuries such as TFCC tears and other tissue injuries, thereby reducing the likelihood of chronic wrist pain. Consequently, this technique should be deemed valuable in clinical practice owing to its outstanding clinical efficacy.


Assuntos
Fraturas do Rádio , Fibrocartilagem Triangular , Fraturas do Punho , Traumatismos do Punho , Humanos , Fibrocartilagem Triangular/cirurgia , Fibrocartilagem Triangular/lesões , Punho , Artroscopia/métodos , Estudos Retrospectivos , Traumatismos do Punho/cirurgia , Fraturas do Rádio/cirurgia , Articulação do Punho/cirurgia , Resultado do Tratamento , Dor
2.
Proc Natl Acad Sci U S A ; 121(10): e2310740121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408233

RESUMO

Autophagy is essential for the turnover of damaged organelles and long-lived proteins. It is responsible for many biological processes such as maintaining brain functions and aging. Impaired autophagy is often linked to neurodevelopmental and neurodegenerative diseases in humans. However, the role of autophagy in neuronal pruning during development remains poorly understood. Here, we report that autophagy regulates dendrite-specific pruning of ddaC sensory neurons in parallel to local caspase activation. Impaired autophagy causes the formation of ubiquitinated protein aggregates in ddaC neurons, dependent on the autophagic receptor Ref(2)P. Furthermore, the metabolic regulator AMP-activated protein kinase and the insulin-target of rapamycin pathway act upstream to regulate autophagy during dendrite pruning. Importantly, autophagy is required to activate the transcription factor CncC (Cap "n" collar isoform C), thereby promoting dendrite pruning. Conversely, CncC also indirectly affects autophagic activity via proteasomal degradation, as impaired CncC results in the inhibition of autophagy through sequestration of Atg8a into ubiquitinated protein aggregates. Thus, this study demonstrates the important role of autophagy in activating CncC prior to dendrite pruning, and further reveals an interplay between autophagy and CncC in neuronal pruning.


Assuntos
Proteínas de Drosophila , Drosophila , Compostos de Amônio Quaternário , Animais , Humanos , Autofagia/fisiologia , Dendritos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Plasticidade Neuronal , Proteínas Ubiquitinadas/metabolismo
4.
BMC Surg ; 23(1): 313, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838733

RESUMO

BACKGROUND: Raynaud's syndrome (RS), also referred to as Raynaud's phenomenon, is a vasospastic disorder causing episodic color changes in extremities upon exposure to cold or stress. These manifestations, either primary Raynaud's phenomenon (PRP) or associated with connective tissue diseases like systemic sclerosis (SSc) as secondary Raynaud's phenomenon (SRP), affect the quality of life. Current treatments range from calcium channel blockers to innovative surgical interventions, with evolving efficacy and safety profiles. METHODS: In this retrospective study, patients diagnosed with RS were selected based on complete medical records, ensuring homogeneity between groups. Surgeries involved microscopic excision of sympathetic nerve fibers and stripping of the digital artery's adventitia. Postoperative care included antibiotics, analgesia, oral nifedipine, and heat therapies. Evaluation metrics such as the VAS pain score and RCS score were collected bi-weekly. Data analysis was conducted using SPSS 26.0, with significance set at p < 0.05. RESULTS: In total, 15 patients formed the experimental group, with five presenting fingertip soft tissue necrosis and ten showing RS symptoms. Comparative analysis of demographic data between experimental and control groups, both containing 15 participants, demonstrated no significant age and gender difference. However, the "Mean Duration of RP attack" in the experimental group was notably shorter (9.47 min ± 0.31) than the control group (19.33 min ± 1.79). The RS Severity Score also indicated milder severity for the experimental cohort (score: 8.55) compared to the control (score: 11.23). Postoperative assessments at 2, 4, and 6 weeks revealed improved VAS pain scores, RCS scores, and other measures for the experimental group, showing significant differences (p < 0.05). One distinctive case showcased a variation in the common digital nerve and artery course in an RS patient. CONCLUSION: Our retrospective analysis on RS patients indicates that microsurgical techniques are safe and effective in the short term. As surgical practices lean towards minimally invasive methods, our data supports this shift. However, extensive, prospective studies are essential for conclusive insights.


Assuntos
Qualidade de Vida , Doença de Raynaud , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Doença de Raynaud/cirurgia , Doença de Raynaud/complicações , Procedimentos Cirúrgicos Minimamente Invasivos/efeitos adversos , Dor/complicações
5.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 13876-13892, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37486845

RESUMO

Long-tail distribution is widely spread in real-world applications. Due to the extremely small ratio of instances, tail categories often show inferior accuracy. In this paper, we find such performance bottleneck is mainly caused by the imbalanced gradients, which can be categorized into two parts: (1) positive part, deriving from the samples of the same category, and (2) negative part, contributed by other categories. Based on comprehensive experiments, it is also observed that the gradient ratio of accumulated positives to negatives is a good indicator to measure how balanced a category is trained. Inspired by this, we come up with a gradient-driven training mechanism to tackle the long-tail problem: re-balancing the positive/negative gradients dynamically according to current accumulative gradients, with a unified goal of achieving balance gradient ratios. Taking advantage of the simple and flexible gradient mechanism, we introduce a new family of gradient-driven loss functions, namely equalization losses. We conduct extensive experiments on a wide spectrum of visual tasks, including two-stage/single-stage long-tailed object detection (LVIS), long-tailed image classification (ImageNet-LT, Places-LT, iNaturalist), and long-tailed semantic segmentation (ADE20 K). Our method consistently outperforms the baseline models, demonstrating the effectiveness and generalization ability of the proposed equalization losses.

6.
BMC Biol ; 21(1): 33, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36793038

RESUMO

BACKGROUND: Pruning that selectively eliminates unnecessary or incorrect neurites is required for proper wiring of the mature nervous system. During Drosophila metamorphosis, dendritic arbourization sensory neurons (ddaCs) and mushroom body (MB) γ neurons can selectively prune their larval dendrites and/or axons in response to the steroid hormone ecdysone. An ecdysone-induced transcriptional cascade plays a key role in initiating neuronal pruning. However, how downstream components of ecdysone signalling are induced remains not entirely understood. RESULTS: Here, we identify that Scm, a component of Polycomb group (PcG) complexes, is required for dendrite pruning of ddaC neurons. We show that two PcG complexes, PRC1 and PRC2, are important for dendrite pruning. Interestingly, depletion of PRC1 strongly enhances ectopic expression of Abdominal B (Abd-B) and Sex combs reduced, whereas loss of PRC2 causes mild upregulation of Ultrabithorax and Abdominal A in ddaC neurons. Among these Hox genes, overexpression of Abd-B causes the most severe pruning defects, suggesting its dominant effect. Knockdown of the core PRC1 component Polyhomeotic (Ph) or Abd-B overexpression selectively downregulates Mical expression, thereby inhibiting ecdysone signalling. Finally, Ph is also required for axon pruning and Abd-B silencing in MB γ neurons, indicating a conserved function of PRC1 in two types of pruning. CONCLUSIONS: This study demonstrates important roles of PcG and Hox genes in regulating ecdysone signalling and neuronal pruning in Drosophila. Moreover, our findings suggest a non-canonical and PRC2-independent role of PRC1 in Hox gene silencing during neuronal pruning.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas do Grupo Polycomb , Animais , Axônios/metabolismo , Dendritos/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Ecdisona/metabolismo , Plasticidade Neuronal , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo
7.
Development ; 149(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36264221

RESUMO

The evolutionarily conserved Glycogen Synthase Kinase 3ß (GSK3ß), a negative regulator of microtubules, is crucial for neuronal polarization, growth and migration during animal development. However, it remains unknown whether GSK3ß regulates neuronal pruning, which is a regressive process. Here, we report that the Drosophila GSK3ß homologue Shaggy (Sgg) is cell-autonomously required for dendrite pruning of ddaC sensory neurons during metamorphosis. Sgg is necessary and sufficient to promote microtubule depolymerization, turnover and disassembly in the dendrites. Although Sgg is not required for the minus-end-out microtubule orientation in dendrites, hyperactivated Sgg can disturb the dendritic microtubule orientation. Moreover, our pharmacological and genetic data suggest that Sgg is required to promote dendrite pruning at least partly via microtubule disassembly. We show that Sgg and Par-1 kinases act synergistically to promote microtubule disassembly and dendrite pruning. Thus, Sgg and Par-1 might converge on and phosphorylate a common downstream microtubule-associated protein(s) to disassemble microtubules and thereby facilitate dendrite pruning.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Glicogênio Sintase Quinase 3 beta/genética , Dendritos/genética , Células Receptoras Sensoriais , Microtúbulos , Plasticidade Neuronal/genética , Drosophila melanogaster/genética
8.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35735111

RESUMO

During Drosophila metamorphosis, the ddaC dendritic arborisation sensory neurons selectively prune their larval dendrites in response to steroid hormone ecdysone signalling. The Nrf2-Keap1 pathway acts downstream of ecdysone signalling to promote proteasomal degradation and thereby dendrite pruning. However, how the Nrf2-Keap1 pathway is activated remains largely unclear. Here, we demonstrate that the metabolic regulator AMP-activated protein kinase (AMPK) plays a cell-autonomous role in dendrite pruning. Importantly, AMPK is required for Mical and Headcase expression and for activation of the Nrf2-Keap1 pathway. We reveal that AMPK promotes the Nrf2-Keap1 pathway and dendrite pruning partly via inhibition of the insulin pathway. Moreover, the AMPK-insulin pathway is required for ecdysone signalling to activate the Nrf2-Keap1 pathway during dendrite pruning. Overall, this study reveals an important mechanism whereby ecdysone signalling activates the Nrf2-Keap1 pathway via the AMPK-insulin pathway to promote dendrite pruning, and further suggests that during the nonfeeding prepupal stage metabolic alterations lead to activation of the Nrf2-Keap1 pathway and dendrite pruning.


Assuntos
Proteínas de Drosophila , Insulinas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Dendritos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Insulinas/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Plasticidade Neuronal
9.
Cell Rep ; 39(9): 110887, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649352

RESUMO

The evolutionarily conserved CLASPs (cytoplasmic linker-associated proteins) are microtubule-associated proteins that inhibit microtubule catastrophe and promote rescue. CLASPs can regulate axonal elongation and dendrite branching in growing neurons. However, their roles in microtubule orientation and neurite pruning in remodeling neurons remain unknown. Here, we identify the Drosophila CLASP homolog Orbit/MAST, which is required for dendrite pruning in ddaC sensory neurons during metamorphosis. Orbit is important for maintenance of the minus-end-out microtubule orientation in ddaC dendrites. Our structural analysis reveals that the microtubule lattice-binding TOG2 domain is required for Orbit to regulate dendritic microtubule orientation and dendrite pruning. In a genetic modifier screen, we further identify the conserved Par-1 kinase as a suppressor of Orbit in dendritic microtubule orientation. Moreover, elevated Par-1 function impairs dendritic microtubule orientation and dendrite pruning, phenocopying orbit mutants. Overall, our study demonstrates that Drosophila CLASP governs dendritic microtubule orientation and dendrite pruning at least partly via suppressing Par-1 kinase.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Metamorfose Biológica , Microtúbulos/metabolismo , Plasticidade Neuronal/genética
10.
EMBO Rep ; 22(10): e52679, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34338441

RESUMO

It has long been thought that microtubule disassembly, one of the earliest cellular events, contributes to neuronal pruning and neurodegeneration in development and disease. However, how microtubule disassembly drives neuronal pruning remains poorly understood. Here, we conduct a systematic investigation of various microtubule-destabilizing factors and identify exchange factor for Arf6 (Efa6) and Stathmin (Stai) as new regulators of dendrite pruning in ddaC sensory neurons during Drosophila metamorphosis. We show that Efa6 is both necessary and sufficient to regulate dendrite pruning. Interestingly, Efa6 and Stai facilitate microtubule turnover and disassembly prior to dendrite pruning without compromising the minus-end-out microtubule orientation in dendrites. Moreover, our pharmacological and genetic manipulations strongly support a key role of microtubule disassembly in promoting dendrite pruning. Thus, this systematic study highlights the importance of two selective microtubule destabilizers in dendrite pruning and substantiates a causal link between microtubule disassembly and neuronal pruning.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Dendritos , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Microtúbulos , Plasticidade Neuronal
11.
Cell Rep ; 36(5): 109466, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348164

RESUMO

The evolutionarily conserved Nrf2-Keap1 pathway is a key antioxidant response pathway that protects cells/organisms against detrimental effects of oxidative stress. Impaired Nrf2 function is associated with cancer and neurodegenerative diseases in humans. However, the function of the Nrf2-Keap1 pathway in the developing nervous systems has not been established. Here we demonstrate a cell-autonomous role of the Nrf2-Keap1 pathway, composed of CncC/Nrf2, Keap1, and MafS, in governing neuronal remodeling during Drosophila metamorphosis. Nrf2-Keap1 signaling is activated downstream of the steroid hormone ecdysone. Mechanistically, the Nrf2-Keap1 pathway is activated via cytoplasmic-to-nuclear translocation of CncC in an importin- and ecdysone-signaling-dependent manner. Moreover, Nrf2-Keap1 signaling regulates dendrite pruning independent of its canonical antioxidant response pathway, acting instead through proteasomal degradation. This study reveals an epistatic link between the Nrf2-Keap1 pathway and steroid hormone signaling and demonstrates an antioxidant-independent but proteasome-dependent role of the Nrf2-Keap1 pathway in neuronal remodeling.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Plasticidade Neuronal , Transdução de Sinais , Esteroides/metabolismo , Animais , Antioxidantes/metabolismo , Sequência de Bases , Núcleo Celular/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/química , Ecdisona/metabolismo , Carioferinas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Proteólise
12.
Sci Rep ; 11(1): 4709, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633260

RESUMO

Cannabinoids have an important role in regulating feeding behaviors via cannabinoid receptors in mammals. Cannabinoids also exhibit potential therapeutic functions in Drosophila melanogaster, or fruit fly that lacks cannabinoid receptors. However, it remains unclear whether cannabinoids affect food consumption and metabolism in a cannabinoid receptors-independent manner in flies. In this study, we systematically investigated pharmacological functions of various cannabinoids in modulating food preference and consumption in flies. We show that flies display preferences for consuming cannabinoids, independent of two important sensory regulators Poxn and Orco. Interestingly, phyto- and endo- cannabinoids exhibit an inhibitory effect on food intake. Unexpectedly, the non-selective CB1 receptor antagonist AM251 attenuates the suppression of food intake by endocannabinoids. Moreover, the endocannabinoid anandamide (AEA) and its metabolite inhibit food intake and promote resistance to starvation, possibly through reduced lipid metabolism. Thus, this study has provided insights into a pharmacological role of cannabinoids in feeding behaviors using an adult Drosophila model.


Assuntos
Canabinoides/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Animais , Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Drosophila melanogaster/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Endocanabinoides/farmacologia , Masculino , Alcamidas Poli-Insaturadas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo
13.
Development ; 147(19)2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32928906

RESUMO

Neuronal pruning is essential for proper wiring of the nervous systems in invertebrates and vertebrates. Drosophila ddaC sensory neurons selectively prune their larval dendrites to sculpt the nervous system during early metamorphosis. However, the molecular mechanisms underlying ddaC dendrite pruning remain elusive. Here, we identify an important and cell-autonomous role of the membrane protein Raw in dendrite pruning of ddaC neurons. Raw appears to regulate dendrite pruning via a novel mechanism, which is independent of JNK signaling. Importantly, we show that Raw promotes endocytosis and downregulation of the conserved L1-type cell-adhesion molecule Neuroglian (Nrg) prior to dendrite pruning. Moreover, Raw is required to modulate the secretory pathway by regulating the integrity of secretory organelles and efficient protein secretion. Mechanistically, Raw facilitates Nrg downregulation and dendrite pruning in part through regulation of the secretory pathway. Thus, this study reveals a JNK-independent role of Raw in regulating the secretory pathway and thereby promoting dendrite pruning.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Endocitose/genética , Endocitose/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Metamorfose Biológica/genética , Metamorfose Biológica/fisiologia , Via Secretória/genética , Via Secretória/fisiologia
14.
EMBO J ; 39(10): e103549, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32267553

RESUMO

Drosophila class IV ddaC neurons selectively prune all larval dendrites to refine the nervous system during metamorphosis. During dendrite pruning, severing of proximal dendrites is preceded by local microtubule (MT) disassembly. Here, we identify an unexpected role of Mini spindles (Msps), a conserved MT polymerase, in governing dendrite pruning. Msps associates with another MT-associated protein TACC, and both stabilize each other in ddaC neurons. Moreover, Msps and TACC are required to orient minus-end-out MTs in dendrites. We further show that the functions of msps in dendritic MT orientation and dendrite pruning are antagonized by the kinesin-13 MT depolymerase Klp10A. Excessive MT depolymerization, which is induced by pharmacological treatment and katanin overexpression, also perturbs dendritic MT orientation and dendrite pruning, phenocopying msps mutants. Thus, we demonstrate that the MT polymerase Msps is required to form dendritic minus-end-out MTs and thereby promotes dendrite pruning in Drosophila sensory neurons.


Assuntos
Dendritos/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Katanina/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mutação , Plasticidade Neuronal
15.
Proc Natl Acad Sci U S A ; 117(17): 9292-9301, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32277029

RESUMO

In insects, 20-hydroxyecdysone (20E) limits the growth period by triggering developmental transitions; 20E also modulates the growth rate by antagonizing insulin/insulin-like growth factor signaling (IIS). Previous work has shown that 20E cross-talks with IIS, but the underlying molecular mechanisms are not fully understood. Here we found that, in both the silkworm Bombyx mori and the fruit fly Drosophila melanogaster, 20E antagonized IIS through the AMP-activated protein kinase (AMPK)-protein phosphatase 2A (PP2A) axis in the fat body and suppressed the growth rate. During Bombyx larval molt or Drosophila pupariation, high levels of 20E activate AMPK, a molecular sensor that maintains energy homeostasis in the insect fat body. In turn, AMPK activates PP2A, which further dephosphorylates insulin receptor and protein kinase B (AKT), thus inhibiting IIS. Activation of the AMPK-PP2A axis and inhibition of IIS in the Drosophila fat body reduced food consumption, resulting in the restriction of growth rate and body weight. Overall, our study revealed an important mechanism by which 20E antagonizes IIS in the insect fat body to restrict the larval growth rate, thereby expanding our understanding of the comprehensive regulatory mechanisms of final body size in animals.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tamanho Corporal/fisiologia , Proteína Fosfatase 2/metabolismo , Animais , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Ecdisterona/metabolismo , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Insetos/genética , Insetos/crescimento & desenvolvimento , Insetos/metabolismo , Insulina/metabolismo , Larva/crescimento & desenvolvimento , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Somatomedinas/metabolismo
16.
EMBO Rep ; 21(5): e48843, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32187821

RESUMO

Pruning that selectively eliminates inappropriate projections is crucial for sculpting neural circuits during development. During Drosophila metamorphosis, ddaC sensory neurons undergo dendrite-specific pruning in response to the steroid hormone ecdysone. However, the understanding of the molecular mechanisms underlying dendrite pruning remains incomplete. Here, we show that protein phosphatase 2A (PP2A) is required for dendrite pruning. The catalytic (Microtubule star/Mts), scaffolding (PP2A-29B), and two regulatory subunits (Widerborst/Wdb and Twins/Tws) play important roles in dendrite pruning. Functional analyses indicate that PP2A, via Wdb, facilitates the expression of Sox14 and Mical prior to dendrite pruning. Furthermore, PP2A, via Tws, governs the minus-end-out orientation of microtubules (MTs) in the dendrites. Moreover, the levels of Klp10A, a MT depolymerase, increase when PP2A is compromised. Attenuation of Klp10A fully rescues the MT orientation defects in mts or pp2a-29b RNAi ddaC neurons, suggesting that PP2A governs dendritic MT orientation by suppressing Klp10A levels and/or function. Taken together, this study sheds light on a novel function of PP2A in regulating dendrite pruning and dendritic MT polarity in sensory neurons.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Dendritos , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cinesinas , Microtúbulos , Plasticidade Neuronal , Proteína Fosfatase 2/genética
17.
PLoS Biol ; 17(6): e3000276, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170139

RESUMO

The ability of neural stem cells (NSCs) to transit between quiescence and proliferation is crucial for brain development and homeostasis. Drosophila Hippo pathway maintains NSC quiescence, but its regulation during brain development remains unknown. Here, we show that CRL4Mahj, an evolutionarily conserved E3 ubiquitin ligase, is essential for NSC reactivation (exit from quiescence). We demonstrate that damaged DNA-binding protein 1 (DDB1) and Cullin4, two core components of Cullin4-RING ligase (CRL4), are intrinsically required for NSC reactivation. We have identified a substrate receptor of CRL4, Mahjong (Mahj), which is necessary and sufficient for NSC reactivation. Moreover, we show that CRL4Mahj forms a protein complex with Warts (Wts/large tumor suppressor [Lats]), a kinase of the Hippo signaling pathway, and Mahj promotes the ubiquitination of Wts. Our genetic analyses further support the conclusion that CRL4Mahj triggers NSC reactivation by inhibition of Wts. Given that Cullin4B mutations cause mental retardation and cerebral malformation, similar regulatory mechanisms may be applied to the human brain.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Células-Tronco Neurais/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Proteínas de Transporte/fisiologia , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Humanos , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
18.
Cell Rep ; 27(4): 987-996.e3, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018143

RESUMO

Mutations of the Integrator subunits are associated with neurodevelopmental disorders and cancers. However, their role during neural development is poorly understood. Here, we demonstrate that the Drosophila Integrator complex prevents dedifferentiation of intermediate neural progenitors (INPs) during neural stem cell (neuroblast) lineage development. Loss of intS5, intS8, and intS1 generated ectopic type II neuroblasts. INP-specific knockdown of intS8, intS1, and intS2 resulted in the formation of excess type II neuroblasts, indicating that Integrator prevents INP dedifferentiation. Cell-type-specific DamID analysis identified 1413 IntS5-binding sites in INPs, including zinc-finger transcription factor earmuff (erm). Furthermore, erm expression is lost in intS5 and intS8 mutant neuroblast lineages, and intS8 genetically interacts with erm to suppress the formation of ectopic neuroblasts. Taken together, our data demonstrate that the Drosophila Integrator complex plays a critical role in preventing INP dedifferentiation primarily by regulating a key transcription factor Erm that also suppresses INP dedifferentiation.


Assuntos
Desdiferenciação Celular/genética , Proteínas de Drosophila/fisiologia , Drosophila/citologia , Células-Tronco Neurais/citologia , Animais , Linhagem da Célula , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica
19.
Elife ; 82019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30920370

RESUMO

Class IV ddaC neurons specifically prune larval dendrites without affecting axons during Drosophila metamorphosis. ddaCs distribute the minus ends of microtubules (MTs) to dendrites but the plus ends to axons. However, a requirement of MT minus-end-binding proteins in dendrite-specific pruning remains completely unknown. Here, we identified Patronin, a minus-end-binding protein, for its crucial and dose-sensitive role in ddaC dendrite pruning. The CKK domain is important for Patronin's function in dendrite pruning. Moreover, we show that both patronin knockdown and overexpression resulted in a drastic decrease of MT minus ends and a concomitant increase of plus-end-out MTs in ddaC dendrites, suggesting that Patronin stabilizes dendritic minus-end-out MTs. Consistently, attenuation of Klp10A MT depolymerase in patronin mutant neurons significantly restored minus-end-out MTs in dendrites and thereby rescued dendrite-pruning defects. Thus, our study demonstrates that Patronin orients minus-end-out MT arrays in dendrites to promote dendrite-specific pruning mainly through antagonizing Klp10A activity. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that minor issues remain unresolved (see decision letter).


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Plasticidade Neuronal , Animais , Cinesinas/metabolismo
20.
PLoS Biol ; 16(8): e2004506, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30142146

RESUMO

Refinement of the nervous system depends on selective removal of excessive axons/dendrites, a process known as pruning. Drosophila ddaC sensory neurons prune their larval dendrites via endo-lysosomal degradation of the L1-type cell adhesion molecule (L1-CAM), Neuroglian (Nrg). Here, we have identified a novel gene, pruning defect 1 (prd1), which governs dendrite pruning of ddaC neurons. We show that Prd1 colocalizes with the clathrin adaptor protein α-Adaptin (α-Ada) and the kinesin-3 immaculate connections (Imac)/Uncoordinated-104 (Unc-104) in dendrites. Moreover, Prd1 physically associates with α-Ada and Imac, which are both critical for dendrite pruning. Prd1, α-Ada, and Imac promote dendrite pruning via the regulation of endo-lysosomal degradation of Nrg. Importantly, genetic interactions among prd1, α-adaptin, and imac indicate that they act in the same pathway to promote dendrite pruning. Our findings indicate that Prd1, α-Ada, and Imac act together to regulate discrete distribution of α-Ada/clathrin puncta, facilitate endo-lysosomal degradation, and thereby promote dendrite pruning in sensory neurons.


Assuntos
Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Moléculas de Adesão Celular Neuronais/genética , Dendritos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cinesinas/genética , Molécula L1 de Adesão de Célula Nervosa/genética , Plasticidade Neuronal/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Dendritos/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Cinesinas/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Metamorfose Biológica/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Ligação Proteica , Proteólise , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...